

**INTERNATIONAL QUALIFICATIONS
AND ASSESSMENT CENTRE (IQAC)**

Approved

Programme	LEVEL 5 EXTENDED DIPLOMA IN ARTIFICIAL INTELLIGENCE		
Unit Number/ Unit Title	UNIT 7 ADVANCED MACHINE LEARNING		
Cohort Code:	L05AML-U7		
Unit Level	5		
Total GLH	Total qualification time 200/ Total Guided learning hours 90/ Self-guided learning hours 110		
Credits	20 CATS/ 10 ECTS		
Lecturer			
Start Date		End Date	

Unit Aims	Students will gain hands-on experience with algorithms such as ensemble methods, deep learning, and reinforcement learning. The unit will also emphasize model evaluation, tuning, and ethical considerations in deploying machine learning solutions.
Differentiation Strategies (e.g. planned activities or support for individual learners according to their needs)	<p>The total number of students to be in the lesson is approximately 20. This is a multicultural group of students predominantly between the ages of 24 – 45, with numerous ethnic, gender, and creed background. These are UK academic level 5 students; hence it is assumed that they have practical, theoretical, or technological knowledge and understanding of a subject or field of work to find ways forward in broadly defined, complex contexts. These students must be able to generate information, evaluate, synthesise the use information from a variety of sources. Various approaches to addressing the various identified students needs will be adopted throughout the lesson. Such will include:-</p> <ol style="list-style-type: none">1. Progressive tasks2. Digital resources

	<p>3. Verbal support 4. Variable outcomes 5. Collaborative learning 6. Ongoing assessment</p> <p>Flexible-pace learning</p>
Equality & Diversity	Variety of teaching techniques will be employed to ensure that the needs of each individual learner are met.
Safeguarding & Prevent	Safeguarding policies and the Prevent duty are strictly observed to ensure the safety, well-being, and inclusivity of all students and staff.
Health & Safety	SIRM H&S policies will be maintained.
Learning Resources	<p style="text-align: center;">Teaching and Learning Materials</p> <ul style="list-style-type: none"> • "Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville • "Pattern Recognition and Machine Learning" by Christopher Bishop • "Machine Learning: A Probabilistic Perspective" by Kevin P. Murphy.

Learning Outcome	Assessment Criteria
LO1. Explore advanced machine learning algorithms.	1.1: Understand advanced supervised learning techniques such as ensemble methods. 1.2: Implement support vector machines and kernel methods.
LO2. Apply deep learning techniques.	2.1: Develop and train deep learning models. 2.2: Utilize convolutional neural networks (CNNs) for image recognition tasks.
LO3. Optimize machine learning models.	3.1: Apply hyperparameter tuning techniques. 3.2: Use model evaluation metrics to optimize performance.
LO4. Develop solutions for complex problems using machine learning.	4.1: Apply advanced machine learning techniques to real-world datasets. 4.2: Evaluate and improve model robustness and generalization.

No	Learning Outcome / Topic	Learning and Teaching Activities	Which assessment criteria does the session relate to?	Day/month/year/ signature
1.	Ensemble Methods Fundamentals	Ensemble Methods Fundamentals Bagging vs. Boosting, bias-variance tradeoff	LO1: Advanced ML Algorithms	
2.	Random Forests Deep Dive	Random Forests Deep Dive Feature importance, OOB error, scikit-learn implementation	LO1: Advanced ML Algorithms	
3.	Gradient Boosting Machines (GBM)	Gradient Boosting Machines (GBM) XGBoost, LightGBM, CatBoost (comparative analysis)	LO1: Advanced ML Algorithms	
4.	Support Vector Machines (SVMs)	Support Vector Machines (SVMs) Hard/soft margins, kernel trick (RBF, polynomial)	LO1: Advanced ML Algorithms	
5.	Kernel Methods Workshop	Kernel Methods Workshop Implementing custom kernels for non-linear problems	LO1: Advanced ML Algorithms	
6.	Neural Networks Review	Neural Networks Review Feedforward networks, backpropagation refresher	LO2: Deep Learning Techniques	
7.	Deep Learning Frameworks	Deep Learning Frameworks TensorFlow vs. PyTorch comparison, GPU utilization	LO2: Deep Learning Techniques	
8.	Half-Term Exam	<ul style="list-style-type: none"> - Review of LO1 topics - Practice questions and mock assessment - Half-term assessment based on LO1 (theory) 	LO1 LO2	
9.	Training Deep Networks	Training Deep Networks Vanishing gradients, ReLU, batch normalization	LO2: Deep Learning Techniques	
10.	CNNs for Image Recognition	CNNs for Image Recognition Convolutional layers, pooling, architecture design	LO2: Deep Learning Techniques	
11.	Transfer Learning Lab	Transfer Learning Lab Fine-tuning pre-trained models (ResNet, VGG)	LO2: Deep Learning Techniques	
12.	Advanced CNN Architectures	Advanced CNN Architectures Inception modules, residual connections (ResNet)	LO2: Deep Learning Techniques	

13.	Hyperparameter Tuning	Hyperparameter Tuning Grid search, random search, Bayesian optimization	LO3: Model Optimization	
14.	Final Exam Preparation & Review	- Comprehensive review of all learning outcomes - Practice questions and revision of key topics		
15.	Final Exam	- Final-term assessment covering all learning outcomes (theory and practical elements)		
16.	Feedback & Reflection	- Review of final exam - Individual feedback on performance - Reflective discussion on key learning points		
17.	AutoML Tools	AutoML Tools H2O.ai, AutoKeras (hands-on demo)	LO3: Model Optimization	
18.	Model Evaluation Metrics	Model Evaluation Metrics Precision-recall tradeoff, AUC-ROC, F β scores	LO3: Model Optimization	
19.	Model Interpretability	Model Interpretability SHAP values, LIME, feature attribution	LO3: Model Optimization	
20.	Bias Detection & Mitigation	Bias Detection & Mitigation Fairness metrics (demographic parity, equalized odds)	LO3: Model Optimization	
21.	Time Series Forecasting	Time Series Forecasting LSTMs, Prophet (Facebook's model)	LO4: Complex Problem-Solving	
22.	Natural Language Processing (NLP)	Natural Language Processing (NLP) Word embeddings (Word2Vec, GloVe), transformer overview	LO4: Complex Problem-Solving	
23.	Half-Term Exam	<i>Integrated Projects & Assessments</i> Kaggle-Style Competition End-to-end pipeline on a complex dataset (e.g., satellite images)		
24.	Anomaly Detection	Anomaly Detection Autoencoders, GANs for fraud detection	LO4: Complex Problem-Solving	
25.	Reinforcement Learning Primer	Reinforcement Learning Primer Q-learning, Deep Q-Networks (DQN) concepts	LO4: Complex Problem-Solving	
26.	Model Deployment Basics	Model Deployment Basics Flask/Docker for ML APIs, ONNX format	LO4: Complex Problem-Solving	

27.	Model Robustness Challenge	Model Robustness Challenge Adversarial attacks (FGSM), defensive distillation	LO4: Complex Problem-Solving	
28.	Capstone Project	Capstone Project Solve a real-world problem (healthcare, finance, or IoT)	LO4: Complex Problem-Solving	
29.	Final Exam Preparation & Review	LO1, LO2, LO3, LO4	LO1, LO2, LO3, LO4	
30.	Final Exam		LO1, LO2, LO3, LO4	