

**INTERNATIONAL QUALIFICATIONS
AND ASSESSMENT CENTRE (IQAC)**

Programme	Level 6 Diploma in Artificial Intelligence	
Unit Number/ Unit Title	UNIT 1. ADVANCED PROGRAMMING FOR DATA SCIENCE	
Cohort Code:	L06APDS-U1	
Unit Level	6	
Total GLH	Total qualification time 200/ Total Guided learning hours 90/ Self-guided learning hours 110	
Credits	20 CATS/ 10 ECTS	
Lecturer		
Start Date		End Date

Unit Aims	This unit focuses on developing advanced programming capabilities in Python for AI and data science contexts. Learners will master data structures, object-oriented programming, performance optimization, and integration of libraries such as NumPy, Pandas, and Scikit-learn. Emphasis is also placed on writing maintainable, modular, and testable code for real-world AI applications.
Differentiation Strategies <i>(e.g. planned activities or support for individual learners according to their needs)</i>	The total number of students to be in the lesson is approximately 20. This is a multicultural group of students predominantly between the ages of 24 – 45, with numerous ethnic, gender, and creed background. These are UK academic level 5 students; hence it is assumed that they have practical, theoretical, or technological knowledge and understanding of a subject or field of work to find ways forward in broadly defined, complex contexts. These students must be able to generate information, evaluate, synthesise the use information from a variety of

	<p>sources. Various approaches to addressing the various identified students needs will be adopted throughout the lesson. Such will include:-</p> <ol style="list-style-type: none"> 1. Progressive tasks 2. Digital resources 3. Verbal support 4. Variable outcomes 5. Collaborative learning 6. Ongoing assessment 7. Flexible-pace learning
Equality & Diversity	Variety of teaching techniques will be employed to ensure that the needs of each individual learner are met.
Safeguarding & Prevent	Safeguarding policies and the Prevent duty are strictly observed to ensure the safety, well-being, and inclusivity of all students and staff.
Health & Safety	SIRM H&S policies will be maintained.
Learning Resources	<p style="text-align: center;">Teaching and Learning Materials</p> <ul style="list-style-type: none"> • Lutz, M. (2013). Learning Python. O'Reilly Media. • McKinney, W. (2017). Python for Data Analysis. O'Reilly Media. • Grus, J. (2019). Data Science from Scratch. O'Reilly. • Beazley, D. (2016). Python Cookbook. O'Reilly Media.

Learning Outcome	Assessment Criteria
LO1. 1. Master advanced programming concepts in Python.	1.1 Demonstrate use of classes, decorators, and generators. 1.2 Implement exception handling and unit testing.
LO2. 2. Apply data structures and algorithms in Python.	2.1 Implement stacks, queues, trees, and graphs. 2.2 Analyse time and space complexity of algorithms.
LO3. 3. Utilize Python libraries for AI/data science.	3.1 Perform data wrangling using Pandas. 3.2 Apply NumPy for vectorized operations and matrix computation.
LO4. 4. Optimize and refactor code for scalability.	4.1 Profile and benchmark Python code. 4.2 Refactor code for maintainability and modularity.
LO5. 5. Integrate APIs and external data sources.	5.1 Connect Python programs with RESTful APIs. 5.2 Parse and process JSON/XML data for use in AI workflows.

No	Learning Outcome / Topic	Learning and Teaching Activities	Which assessment criteria does the session relate to?	Day/month/year/ signature
1.	Object-Oriented Programming (OOP) in Python	Object-Oriented Programming (OOP) in Python Classes, inheritance, polymorphism, magic methods (<code>__init__</code> , <code>__str__</code>)	LO1: Advanced Python Programming	
2.	Decorators & Context Managers	Decorators & Context Managers <code>@property</code> , <code>@staticmethod</code> , <code>@contextmanager</code>	LO1: Advanced Python Programming	
3.	Generators & Iterators	Generators & Iterators <code>yield</code> , lazy evaluation, memory efficiency	LO1: Advanced Python Programming	
4.	Exception Handling & Logging	Exception Handling & Logging Custom exceptions, <code>try-except-else-finally</code> , logging module	LO1: Advanced Python Programming	
5.	Unit Testing & Debugging	Unit Testing & Debugging <code>pytest</code> , <code>unittest</code> , debugging with <code>pdb</code>	LO1: Advanced Python Programming	
6.	Stacks & Queues	Stacks & Queues LIFO vs. FIFO, <code>collections.deque</code>	LO2: Data Structures & Algorithms	
7.	Linked Lists & Trees	Linked Lists & Trees Node-based structures, binary search trees (BSTs)	LO2: Data Structures & Algorithms	
8.	Half-Term Exam	- Review of LO1 topics - Practice questions and mock assessment - Half-term assessment based on LO1 (theory)	LO1 LO2	
9.	Graphs & Graph Algorithms	Graphs & Graph Algorithms Adjacency lists, BFS/DFS, Dijkstra's algorithm	LO2: Data Structures & Algorithms	
10.	Hash Tables & Dictionaries	Hash Tables & Dictionaries Collision handling, <code>dict</code> internals	LO2: Data Structures & Algorithms	
11.	Algorithm Complexity Analysis	Algorithm Complexity Analysis Big-O notation, time/space tradeoffs	LO2: Data Structures & Algorithms	

12.	Pandas for Data Wrangling	Pandas for Data Wrangling DataFrame operations, groupby, merge, handling missing data	LO3: Python Libraries for AI/Data Science	
13.	NumPy for Numerical Computing	NumPy for Numerical Computing Vectorization, broadcasting, matrix operations	LO3: Python Libraries for AI/Data Science	
14.	Final Exam Preparation & Review	- Comprehensive review of all learning outcomes - Practice questions and revision of key topics		
15.	Final Exam	- Final-term assessment covering all learning outcomes (theory and practical elements)		
16.	Feedback & Reflection	- Review of final exam - Individual feedback on performance - Reflective discussion on key learning points		
17.	Advanced Pandas Techniques	Advanced Pandas Techniques Multi-indexing, apply, lambda functions	LO3: Python Libraries for AI/Data Science	
18.	Optimizing Pandas Performance	Optimizing Pandas Performance dtype optimization, eval()/query()	LO3: Python Libraries for AI/Data Science	
19.	Working with Dates & Times	Working with Dates & Times datetime, pandas.Timestamp, timezone handling	LO3: Python Libraries for AI/Data Science	
20.	Profiling Python Code	Profiling Python Code cProfile, timeit, line profilers	LO4: Code Optimization & Refactoring	
21.	Memory Management	Memory Management sys.getsizeof(), __slots__, garbage collection	LO4: Code Optimization & Refactoring	
22.	Parallel & Concurrent Programming	Parallel & Concurrent Programming multiprocessing, threading, asyncio	LO4: Code Optimization & Refactoring	
23.	Half-Term Exam	Capstone Project End-to-end data pipeline: API → ETL → Analysis		

24.	Code Refactoring Best Practices	Code Refactoring Best Practices DRY principles, modular design, PEP 8 compliance	LO4: Code Optimization & Refactoring	
25.	Design Patterns for Data Science	Design Patterns for Data Science Singleton, factory, observer patterns	LO4: Code Optimization & Refactoring	
26.	Working with RESTful APIs	Working with RESTful APIs <code>requests</code> library, authentication (OAuth, API keys)	LO5: API Integration & Data Pipelines	
27.	Parsing JSON/XML Data	Parsing JSON/XML Data <code>json</code> module, <code>xml.etree.ElementTree</code>	LO5: API Integration & Data Pipelines	
28.	Building Data Pipelines	Building Data Pipelines ETL workflows with pandas, Airflow basics Database Integration SQLite, SQLAlchemy, <code>psycopg2</code> (PostgreSQL)	LO5: API Integration & Data Pipelines	
29.	Final Exam Preparation & Review	LO1, LO2, LO3, LO4	LO1, LO2, LO3, LO4	
30.	Final Exam		LO1, LO2, LO3, LO4	