

INTERNATIONAL QUALIFICATIONS
AND ASSESSMENT CENTRE (IQAC)

Programme	Level 6 Diploma in Artificial Intelligence	
Unit Number/ Unit Title	UNIT 2 ADVANCED MACHINE LEARNING AND DEEP LEARNING	
Cohort Code:	L06AMDL-U2	
Unit Level	6	
Total GLH	Total qualification time 200/ Total Guided learning hours 90/ Self-guided learning hours 110	
Credits	20 CATS/ 10 ECTS	
Lecturer		
Start Date		End Date

Unit Aims	This unit advances learners' knowledge of machine learning and deep learning architectures. Students will work on real-world problems using ensemble learning, CNNs, RNNs, and transformers. The course emphasizes practical implementation, model evaluation, and optimization
Differentiation Strategies <i>(e.g. planned activities or support for individual learners according to their needs)</i>	The total number of students to be in the lesson is approximately 20. This is a multicultural group of students predominantly between the ages of 24 – 45, with numerous ethnic, gender, and creed background. These are UK academic level 5 students; hence it is assumed that they have practical, theoretical, or technological knowledge and understanding of a subject or field of work to find ways forward in broadly defined, complex contexts. These students must be able to generate information, evaluate, synthesise the use information from a variety of sources. Various approaches to addressing the various identified students needs will be adopted throughout the lesson. Such will include:- <ol style="list-style-type: none">1. Progressive tasks2. Digital resources3. Verbal support

	<ol style="list-style-type: none"> 4. Variable outcomes 5. Collaborative learning 6. Ongoing assessment 7. Flexible-pace learning
Equality & Diversity	Variety of teaching techniques will be employed to ensure that the needs of each individual learner are met.
Safeguarding & Prevent	Safeguarding policies and the Prevent duty are strictly observed to ensure the safety, well-being, and inclusivity of all students and staff.
Health & Safety	SIRM H&S policies will be maintained.
Learning Resources	<p style="text-align: center;">Teaching and Learning Materials</p> <ul style="list-style-type: none"> • Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. • Chollet, F. (2021). Deep Learning with Python. • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. • Raschka, S., & Mirjalili, V. (2019). Python Machine Learning.

Learning Outcome	Assessment Criteria
LO1. 1. Develop advanced machine learning models.	1.1 Implement and evaluate ensemble models (Random Forest, XGBoost). 1.1 Perform hyperparameter tuning and cross-validation.
LO2. 2. Build and apply deep learning architectures.	2.1 Construct CNNs for image data. 2.1 Design RNNs and LSTM networks for time series/NLP.
LO3. 3. Evaluate and optimize model performance.	3.1 Use evaluation metrics (AUC, F1-score, etc.). 3.1 Apply regularization and dropout.
LO4. 4. Implement transfer learning and fine-tuning.	4.1 Fine-tune pretrained models on custom datasets. 4.1 Evaluate computational efficiency of different approaches.
LO5. 5. Critically compare deep learning frameworks.	5.1 Contrast TensorFlow, PyTorch, and Keras. 5.1 Justify framework choice for a given task.

No	Learning Outcome / Topic	Learning and Teaching Activities	Which assessment criteria does the session relate to?	Day/month/year/ signature
1.	Introduction to Ensemble Learning	Introduction to Ensemble Learning Bias-variance tradeoff, bagging vs. boosting.	LO1: Develop Advanced Machine Learning Models	
2.	Random Forest	Random Forest Algorithm, feature importance, OOB error.	LO1: Develop Advanced Machine Learning Models	
3.	Gradient Boosting (XGBoost, LightGBM, CatBoost)	Gradient Boosting (XGBoost, LightGBM, CatBoost) Loss functions, tree pruning, SHAP values.	LO1: Develop Advanced Machine Learning Models	
4.	Hyperparameter Tuning	Hyperparameter Tuning Grid search, random search, Bayesian optimization.	LO1: Develop Advanced Machine Learning Models	
5.	Cross-Validation Strategies	Cross-Validation Strategies k-fold, stratified, time-series CV (e.g., TimeSeriesSplit).	LO1: Develop Advanced Machine Learning Models	
6.	Neural Networks Fundamentals	Neural Networks Fundamentals Perceptrons, activation functions (ReLU, Sigmoid), backpropagation.	LO2: Build and Apply Deep Learning Architectures	
7.	Optimization Algorithms	Optimization Algorithms SGD, Adam, RMSprop, learning rate scheduling.	LO2: Build and Apply Deep Learning Architectures	
8.	Half-Term Exam	<ul style="list-style-type: none"> - Review of LO1 topics - Practice questions and mock assessment - Half-term assessment based on LO1 (theory) 	LO1 LO2	
9.	Convolutional Neural Networks (CNNs)	Convolutional Neural Networks (CNNs) Filters, pooling, architectures (LeNet, ResNet).	LO2: Build and Apply Deep Learning Architectures	
10.	Transfer Learning with CNNs	Transfer Learning with CNNs Fine-tuning pretrained models (VGG, EfficientNet).	LO2: Build and Apply Deep Learning Architectures	

11.	Recurrent Neural Networks (RNNs)	Recurrent Neural Networks (RNNs) Vanishing gradients, sequential data handling.	LO2: Build and Apply Deep Learning Architectures	
12.	Long Short-Term Memory (LSTM) & GRUs	Long Short-Term Memory (LSTM) & GRUs Cell states, gates, applications in NLP/time series	LO2: Build and Apply Deep Learning Architectures	
13.	Attention Mechanisms & Transformers	Attention Mechanisms & Transformers Self-attention, BERT, GPT overview.	LO2: Build and Apply Deep Learning Architectures	
14.	Final Exam Preparation & Review	- Comprehensive review of all learning outcomes - Practice questions and revision of key topics		
15.	Final Exam	- Final-term assessment covering all learning outcomes (theory and practical elements)		
16.	Feedback & Reflection	- Review of final exam - Individual feedback on performance - Reflective discussion on key learning points		
17.	Advanced Evaluation Metrics	Advanced Evaluation Metrics AUC-ROC, precision-recall curves, F1-score.	LO3: Evaluate and Optimize Model Performance	
18.	Confusion Matrix Analysis	Confusion Matrix Analysis Per-class metrics (sensitivity, specificity).	LO3: Evaluate and Optimize Model Performance	
19.	Regularization Techniques	Regularization Techniques L1/L2 regularization, early stopping.	LO3: Evaluate and Optimize Model Performance	
20.	Dropout & Batch Normalization	Dropout & Batch Normalization Reducing overfitting in deep networks.	LO3: Evaluate and Optimize Model Performance	
21.	Model Interpretability	Model Interpretability LIME, SHAP, Grad-CAM for CNNs.	LO3: Evaluate and Optimize Model Performance	

22.	Pretrained Models Overview	Pretrained Models Overview ImageNet models (ResNet, MobileNet), Hugging Face (NLP).	LO4: Implement Transfer Learning and Fine-Tuning	
23.	Half-Term Exam	Capstone Project End-to-end pipeline: From data to deployed model (e.g., Flask/Django API).		
24.	Fine-Tuning Strategies	Fine-Tuning Strategies Freezing layers, differential learning rates.	LO4: Implement Transfer Learning and Fine-Tuning	
25.	Data Augmentation Techniques	Data Augmentation Techniques Image transformations, NLP augmentations (Synonym Replacement).	LO4: Implement Transfer Learning and Fine-Tuning	
26.	Computational Efficiency	Computational Efficiency Model pruning, quantization, edge deployment (TensorFlow Lite).	LO4: Implement Transfer Learning and Fine-Tuning	
27.	TensorFlow vs. PyTorch	TensorFlow vs. PyTorch Graph vs. eager execution, ecosystem comparison.	LO5: Compare Deep Learning Frameworks	
28.	Keras & High-Level APIs	Keras & High-Level APIs Simplifying model building in TF/PyTorch. Framework Selection Criteria Scalability, community support, production readiness.	LO5: Compare Deep Learning Frameworks	
29.	Final Exam Preparation & Review	LO1, LO2, LO3, LO4	LO1, LO2, LO3, LO4	
30.	Final Exam		LO1, LO2, LO3, LO4	