

Programme

International Foundation Year Diploma in Information Technology
(RQF)

Unit Number/ Unit Title Unit 4 Programming concepts and application development
Cohort Code: L03PAD-U4

Unit Level Level 3

Total GLH Total qualification time 200/ Total Guided learning hours 90/ Self-guided learning hours 110

Credits 20 CATS/ 10 ECTS

Lecturer

Start Date End Date

Unit Aims

The aim of this unit is to introduce learners to the fundamental concepts and the development of
applications. This unit covers the basic syntax and structure of programming languages, the
distinction between high-level and low-level languages, and the different programming paradigms
such as procedural, object-oriented, and functional programming. Learners will develop practical
skills in writing and debugging simple programmes, using comments and proper code formatting,
and understanding algorithms and data structures. By the end of this unit, learners will be equipped
with the foundational programming knowledge and skills necessary to create, analyse, and
troubleshoot basic programmes, forming a crucial stepping stone for advanced study and careers
in software development and related fields.

Differentiation Strategies
(e.g. planned activities or support for
individual learners according to their needs)

The total number of students to be in the lesson is approximately 20. This is a multicultural group
of students predominantly between the ages of 24 – 45, with numerous ethnic, gender, and creed
background. These are UK academic level 5 students; hence it is assumed that they have
practical, theoretical, or technological knowledge and understanding of a subject or field of work
to find ways forward in broadly defined, complex contexts. These students must be able to
generate information, evaluate, synthesise the use information from a variety of sources. Various

THE INTERNATIONAL QUALIFICATIONS

AND ASSESSMENT CENTRE (IQAC)

«Approved»

2025 y. «_____» ___________

16 iyul

approaches to addressing the various identified students needs will be adopted throughout the
lesson. Such will include:-

1. Progressive tasks
2. Digital resources
3. Verbal support
4. Variable outcomes
5. Collaborative learning
6. Ongoing assessment
7. Flexible-pace learning

Equality & Diversity
Variety of teaching techniques will be employed to ensure that the needs of each individual
learner are met.

Safeguarding & Prevent
Safeguarding policies and the Prevent duty are strictly observed to ensure the safety, well-being,
and inclusivity of all students and staff.

Health & Safety SIRM H&S policies will be maintained.

Learning Resources

Teaching and Learning Materials

• "Programming: Principles and Practice Using C++" by Bjarne Stroustrup

• "Python Crash Course" by Eric Matthes

• "Java: A Beginner's Guide" by Herbert Schildt

• "Introduction to the Theory of Computation" by Michael Sipser

• "Programming Logic and Design" by Joyce Farrell

• "Clean Code: A Handbook of Agile Software Craftsmanship" by Robert C. Martin

No

Learning Outcome / Topic

Learning and Teaching Activities
Which assessment
criteria does the

session relate to?

Day/month/
year/

signature

1.
Introduction to Programming

Lecture: What is programming? Demo: "Hello
World" in Python. Discussion: How software
impacts daily life.

LO1.1

2.
Variables & Data Types

Practical Lab: Declaring variables. Hands-on:
Using integers, floats, strings, and booleans in
simple programs.

LO1.1

Learning Outcome Assessment Criteria

LO1: Understand basic programming concepts and paradigms. 1.1 Define key programming concepts (variables, data types, control
structures).
1.2 Explain different programming paradigms (procedural,
object-oriented, functional).

Demonstrate understanding of algorithms and their role in programming.

LO2: 2. Develop and implement simple applications. 2.1 Write code using a high-level programming language (e.g., Python,
Java).
2.2 Design and implement basic algorithms to solve problems.

Debug and test programs to ensure functionality and reliability.

LO3. Apply software
development principles and practices.

3.1 Describe the software development life cycle (SDLC) phases.
3.2 Apply version control and documentation practices in programming
projects.

Discuss ethical considerations in software development.

3.
Operators & Expressions

Workshop: Using arithmetic and comparison
operators. Problem-solving: Writing expressions
to calculate simple values.

LO1.1

4.
Input & Output (I/O)

Practical Lab: Building an interactive console
program that takes user input and prints a
formatted response.

LO2.1

5.
Control Structures: Conditionals

Code-along: Creating if/elif/else statements.
Challenge: Building a simple grading system or
login checker.

LO1.1, LO2.1

6.
Control Structures: Loops

Practical Lab: Using for and while loops. Task:
Writing a program to calculate sums or print
patterns.

LO1.1, LO2.1

7.
Data Collections: Lists & Arrays

Workshop: Storing and manipulating data in lists.
Activity: Creating a simple shopping list or quiz
program.

LO1.1, LO2.1

8.
Data Collections: Dictionaries

Code-along: Using key-value pairs. Problem-
solving: Building a simple employee directory or
product database.

LO1.1, LO2.1

9.
Algorithms & Problem Decomposition

Group Activity: Breaking down a real-world
problem (e.g., making tea) into step-by-step
instructions.

LO1.3

10.
Algorithm Design: Pseudocode

Workshop: Writing pseudocode for a simple task
(e.g., calculating average). Peer review of logic
clarity.

LO1.3, LO2.2

11.
Algorithm Design: Flowcharts

Practical Session: Using draw.io or Lucidchart to
create a flowchart for a login process or vending
machine.

LO1.3, LO2.2

12.
Programming Paradigms Overview

Lecture & Discussion: Comparing Procedural,
OOP, and Functional paradigms with real-world
analogies.

LO1.2

https://draw.io/

13.
Procedural Programming

Code-along: Organizing code into functions. Task:
Converting a monolithic script into separate
functions.

LO1.2, LO2.1

14.
Object-Oriented Programming (OOP)
Basics

Lecture & Demo: Introduction to Classes and
Objects. Practical: Defining a
simple Car or Student class.

LO1.2

15.
Functional Programming Basics

Demo: Using built-in functions
like map() and filter(). Concept discussion: Pure
functions and immutability.

LO1.2

16. Setting Up the Development
Environment

Guided Install: Setting up Python and VS Code.
Tutorial: Running and debugging a simple script.

LO2.1

17.
Writing & Running Your First Program

Independent Practical: Building a personal bio
program that uses variables, I/O, and formatting.

LO2.1

18.
Building with Functions/Methods

Practical Lab: Writing reusable functions.
Challenge: Creating a simple calculator with
functions for each operation.

LO2.1, LO2.2

19.
Introduction to Debugging

Workshop: Using the IDE debugger. Activity:
Intentionally bugging a program and having peers
find the errors.

LO2.3

20.
Testing Strategies

Practical Lab: Writing simple test cases for a
function. Discussion: The importance of testing in
development.

LO2.3

21.
Capstone Project 1: Problem
Definition & Design

Project Work: Choosing a final project (e.g., quiz,
calculator). Creating pseudocode and a flowchart
for the solution.

LO2.2, LO3.2

22.
The Software Development Life Cycle
(SDLC)

Lecture & Case Study: Walking through the SDLC
phases for a well-known application like a mobile
app.

LO3.1

23.
SDLC Models: Waterfall vs. Agile

Group Role-play: Simulating a project using a
Waterfall plan vs. an Agile (sprint-based)
approach.

LO3.1

24.
Introduction to Version Control with
Git

Demo & Practical: Initializing a repo, making
commits. Task: Tracking the versions of a simple
text file.

LO3.2

25.
Using GitHub for Collaboration

Practical Lab: Pushing a local repository to
GitHub. Activity: Cloning a partner's repo and
adding a feature.

LO3.2

26.
Code Documentation & Comments

Workshop: Writing meaningful comments and a
README file for the capstone project. Peer
review for clarity.

LO3.2

27.
Code Readability & Style Guides

Practical Session: Refactoring messy code for
readability. Using linters (e.g., Pylint) to check for
style.

LO3.2

28.
Ethics: Intellectual Property &
Licensing

Discussion: Scenarios involving copying code from
Stack Overflow. Exploring open-source licenses
(MIT, GPL).

LO3.3

29.
Ethics: Privacy, Security & Bias

Case Study Analysis: How a poorly designed
algorithm can lead to biased outcomes or privacy
leaks.

LO3.3

30.
Capstone Project 2: Implementation

Project Lab: Core development time for the final
application, with instructor support and peer
debugging.

LO2.1, LO2.2, LO2.3

31.
Capstone Project 3: Version Control &
Docs

Project Lab: Using Git to manage the project,
writing final documentation, and creating a
presentation.

LO3.2

32.
Debugging & Testing Clinic

Support Session: A dedicated lab for
troubleshooting capstone projects and writing
final test cases.

LO2.3, LO3.2

33.
Project Presentations & Demo

Presentation: Students present their working
application, explain their code, and demonstrate
its functionality.

LO2.1, LO3.2

34.
Course Review & Future Pathways

Review Session: Key concepts recap. Discussion:
Next steps in programming (web dev, data
science, etc.).

LO1, LO2, LO3

