/ THE INTERNATIONAL QUALIFICATIONS
i AND ASSESSMENT CENTRE (IQAC)

International Foundation Year Diploma in Information

Programme (RQF)

Unit Number/ Unit Title Unit 4 Programming concepts and application development

Cohort Code: LO3PAD-U4

Unit Level Level 3

Total GLH Total qualification time 200/ Total Guided learning hours 90/ Self-guided learning hours 110

Credits 20 CATS/ 10 ECTS

Lecturer

Start Date | End Date |
The aim of this unit is to introduce learners to the fundamental concepts and the development of
applications. This unit covers the basic syntax and structure of programming languages, the
distinction between high-level and low-level languages, and the different programming paradigms
such as procedural, object-oriented, and functional programming. Learners will develop practical

Unit Aims skills in writing and debugging simple programmes, using comments and proper code formatting,

and understanding algorithms and data structures. By the end of this unit, learners will be equipped
with the foundational programming knowledge and skills necessary to create, analyse, and
troubleshoot basic programmes, forming a crucial stepping stone for advanced study and careers
in software development and related fields.

Differentiation Strategies
(e.g. planned activities or support for
individual learners according to their needs)

The total number of students to be in the lesson is approximately 20. This is a multicultural group
of students predominantly between the ages of 24 — 45, with numerous ethnic, gender, and creed
background. These are UK academic level 5 students; hence it is assumed that they have
practical, theoretical, or technological knowledge and understanding of a subject or field of work
to find ways forward in broadly defined, complex contexts. These students must be able to
generate information, evaluate, synthesise the use information from a variety of sources. Various

approaches to addressing the various identified students needs will be adopted throughout the
lesson. Such will include:-
1. Progressive tasks
Digital resources
Verbal support
Variable outcomes
Collaborative learning
Ongoing assessment
7. Flexible-pace learning

ouAEwWN

Variety of teaching techniques will be employed to ensure that the needs of each individual

Equality & Diversity learner are met

Safeguarding policies and the Prevent duty are strictly observed to ensure the safety, well-being,

SaieetasinelIRicient and inclusivity of all students and staff.

Health & Safety SIRM H&S policies will be maintained.

Teaching and Learning Materials

e "Programming: Principles and Practice Using C++" by Bjarne Stroustrup

e "Python Crash Course" by Eric Matthes

Learning Resources o "Java: ABeginner's Guide" by Herbert Schildt

e "Introduction to the Theory of Computation" by Michael Sipser

e "Programming Logic and Design" by Joyce Farrell

e "Clean Code: AHandbook of Agile Software Craftsmanship" by Robert C. Martin

Learning Outcome

Assessment Criteria

LO1: Understand basic programming concepts and paradigms.

1.1 Define key programming concepts (variables, data types, control
structures).
1.2 Explain different programming paradigms (procedural,
object-oriented, functional).

Demonstrate understanding of algorithms and their role in programming.

LO2: 2. Develop and implement simple applications.

2.1 Write code using a high-level programming language (e.g., Python,
Java).
2.2 Design and implement basic algorithms to solve problems.

Debug and test programs to ensure functionality and reliability.

LO3. Apply software
development principles and practices.

3.1 Describe the software development life cycle (SDLC) phases.
3.2 Apply version control and documentation practices in programming
projects.

Discuss ethical considerations in software development.

Which assessment Day/month/
No Learning Outcome / Topic Learning and Teaching Activities criteria does the year/
session relate to? signature
1. Lecture: What is programming? Demo: "Hello
Introduction to Programming World" in Python. Discussion: How software LO1.1
impacts daily life.
2. Practical Lab: Declaring variables. Hands-on:
Variables & Data Types Using integers, floats, strings, and booleans in LO1.1
simple programs.

Operators & Expressions

Workshop: Using arithmetic and comparison
operators. Problem-solving: Writing expressions
to calculate simple values.

LO1.1

Input & Output (1/0)

Practical Lab: Building an interactive console
program that takes user input and prints a
formatted response.

LO2.1

Control Structures: Conditionals

Code-along: Creating if/elif/else statements.
Challenge: Building a simple grading system or
login checker.

LO1.1,L02.1

Control Structures: Loops

Practical Lab: Using for and while loops. Task:
Writing a program to calculate sums or print
patterns.

LO1.1,L02.1

Data Collections: Lists & Arrays

Workshop: Storing and manipulating data in lists.

Activity: Creating a simple shopping list or quiz
program.

LO1.1,L02.1

Data Collections: Dictionaries

Code-along: Using key-value pairs. Problem-
solving: Building a simple employee directory or
product database.

LO1.1,L02.1

Algorithms & Problem Decomposition

Group Activity: Breaking down a real-world
problem (e.g., making tea) into step-by-step
instructions.

LO1.3

10.

Algorithm Design: Pseudocode

Workshop: Writing pseudocode for a simple task
(e.g., calculating average). Peer review of logic
clarity.

LO1.3,L02.2

11.

Algorithm Design: Flowcharts

Practical Session: Using draw.io or Lucidchart to
create a flowchart for a login process or vending
machine.

LO1.3,L02.2

12.

Programming Paradigms Overview

Lecture & Discussion: Comparing Procedural,
OOP, and Functional paradigms with real-world
analogies.

LO1.2

https://draw.io/

13. Code-along: Organizing code into functions. Task:
Procedural Programming Converting a monolithic script into separate LO1.2,L02.1
functions.
14. . . . Lecture & Demo: Introduction to Classes and
Objfact-Orlented Programming (OOP) Objects. Practical: Defining a LO1.2
Basics .
simple Car or Student class.
15. Demo: Using built-in functions
Functional Programming Basics like map() and filter(). Concept discussion: Pure LO1.2
functions and immutability.
16. | Setting Up the Development Guided Install: Setting up Python and VS Code. L02.1
Environment Tutorial: Running and debugging a simple script.)
17. Writing & Running Your First Program Independent Practical: Building a personal bio L02.1
program that uses variables, 1/0, and formatting.
18. Practical Lab: Writing reusable functions.
Building with Functions/Methods Challenge: Creating a simple calculator with LO2.1,L02.2
functions for each operation.
19. Workshop: Using the IDE debugger. Activity:
Introduction to Debugging Intentionally bugging a program and having peers | LO2.3
find the errors.
20. Practical Lab: Writing simple test cases for a
Testing Strategies function. Discussion: The importance of testingin | LO2.3
development.
21. Capstone Project 1: Problem Project Work: Chc.)osing a final project (e.g., quiz,
Definition & Design calculator). (;reatlng pseudocode and a flowchart | LO2.2,L03.2
for the solution.
22. Lecture & Case Study: Walking through the SDLC

The Software Development Life Cycle
(SDLC)

phases for a well-known application like a mobile
app.

LO3.1

23.

Group Role-play: Simulating a project using a

SDLC Models: Waterfall vs. Agile Waterfall plan vs. an Agile (sprint-based) LO3.1
approach.
24 Introduction to Version Control with Demo'& Practical: Ini'tializing i re_po, makin_g
Git commits. Task: Tracking the versions of a simple LO3.2
text file.
25. Practical Lab: Pushing a local repository to
Using GitHub for Collaboration GitHub. Activity: Cloning a partner's repo and LO3.2
adding a feature.
26. Workshop: Writing meaningful comments and a
Code Documentation & Comments README file for the capstone project. Peer LO3.2
review for clarity.
27. Practical Session: Refactoring messy code for
Code Readability & Style Guides readability. Using linters (e.g., Pylint) to check for | LO3.2
style.
28. Ethics: Intellectual Property & Discussion: Scenarios irjmvolving copying Fode from
Licensing Stack Overflow. Exploring open-source licenses LO3.3
(MIT, GPL).
29. Case Study Analysis: How a poorly designed
Ethics: Privacy, Security & Bias algorithm can lead to biased outcomes or privacy | LO3.3
leaks.
30. Project Lab: Core development time for the final
Capstone Project 2: Implementation application, with instructor support and peer LO2.1,L02.2,L02.3
debugging.
31 Capstone Project 3: Version Control & Pr(.)j.eCt I_'ab: Using Git to ‘manage the p'roject,
Docs writing fln.al documentation, and creating a LO3.2
presentation.
32. Support Session: A dedicated lab for
Debugging & Testing Clinic troubleshooting capstone projects and writing LO2.3, L0O3.2

final test cases.

33. Presentation: Students present their working
Project Presentations & Demo application, explain their code, and demonstrate | LO2.1, LO3.2
its functionality.
34. Review Session: Key concepts recap. Discussion:

Course Review & Future Pathways

Next steps in programming (web dev, data
science, etc.).

LO1, 102, L03

