

**INTERNATIONAL QUALIFICATIONS
AND ASSESSMENT CENTRE (IQAC)**

Programme	CYBER SECURITY DIPLOMA - LEVEL 7	
Unit Number/ Unit Title	UNIT 2 ADVANCED CRYPTANALYSIS AND QUANTUM-RESISTANT SYSTEMS	
Cohort Code:	L07ACQS-U2	
Unit Level	Level 7	
Total GLH	Total qualification time 200/ Total Guided learning hours 90/ Self-guided learning hours 110	
Credits	20 CATS/ 10 ECTS	
Lecturer		
Start Date		End Date

Unit Aims	This unit explores advanced cryptanalysis techniques and the design of quantum-resistant systems. Learners will assess classical and modern encryption vulnerabilities and evaluate emerging cryptographic schemes suitable for post-quantum security landscapes.
Differentiation Strategies <i>(e.g. planned activities or support for individual learners according to their needs)</i>	The total number of students to be in the lesson is approximately 20. This is a multicultural group of students predominantly between the ages of 24 – 45, with numerous ethnic, gender, and creed background. These are UK academic level 5 students; hence it is assumed that they have practical, theoretical, or technological knowledge and understanding of a subject or field of work to find ways forward in broadly defined, complex contexts. These students must be able to generate information, evaluate, synthesise the use information from a variety of sources. Various approaches to addressing the various identified students needs will be adopted throughout the lesson. Such will include:- <ol style="list-style-type: none">1. Progressive tasks2. Digital resources3. Verbal support4. Variable outcomes

	<p>5. Collaborative learning 6. Ongoing assessment 7. Flexible-pace learning</p>
Equality & Diversity	Variety of teaching techniques will be employed to ensure that the needs of each individual learner are met.
Safeguarding & Prevent	Safeguarding policies and the Prevent duty are strictly observed to ensure the safety, well-being, and inclusivity of all students and staff.
Health & Safety	SIRM H&S policies will be maintained.
Learning Resources	<p style="text-align: center;">Teaching and Learning Materials</p> <ul style="list-style-type: none"> • Buchmann, J. (2013). Introduction to Cryptography. • Bernstein, D. J., & Lange, T. (2017). Post-Quantum Cryptography. • Stinson, D. R., & Paterson, M. (2018). Cryptography: Theory and Practice. • NIST PQC Standardization Reports. • Schneier, B. (2015). Applied Cryptography.

Learning Outcome	Assessment Criteria
LO1. 1. Understand cryptographic vulnerabilities in current systems.	<p>1.1 Explain side-channel, brute-force, and algebraic attacks.</p> <p>1.2 Analyse real-world case studies of compromised cryptosystems.</p>
LO2. 2. Apply cryptanalysis techniques to assess security.	<p>2.1 Demonstrate use of differential and linear cryptanalysis.</p> <p>2.2 Simulate attacks on sample cryptographic algorithms.</p>
LO3. 3. Explore quantum computing implications on encryption.	<p>3.1 Explain the principles of quantum computing.</p> <p>3.2 Assess how Shor's and Grover's algorithms affect RSA, ECC, AES.</p>
LO4. 4. Evaluate quantum-resistant cryptographic schemes.	<p>4.1 Analyse lattice-based, hash-based, and multivariate schemes.</p> <p>4.2 Compare NIST PQC finalists.</p>
LO5. 5. Design recommendations for cryptographic resilience.	<p>5.1 Propose migration plans to quantum-safe cryptography.</p> <p>5.2 Evaluate implementation barriers and organizational readiness.</p>

Week	Learning Outcome / Topic	Learning and Teaching Activities	Which assessment criteria does the session relate to?	Day/month/year/ signature
1	Introduction to Cryptanalysis	Introduction to Cryptanalysis – Goals, methodologies, and ethical considerations.	LO1: Understand cryptographic vulnerabilities in current systems.	
2	Side-Channel Attacks	Side-Channel Attacks – Timing, power analysis, and fault injection (e.g., Spectre/Meltdown).	LO1: Understand cryptographic vulnerabilities in current systems.	
3	Brute-Force & Rainbow Table Attacks	Brute-Force & Rainbow Table Attacks – Mitigations (key stretching, salting).	LO1: Understand cryptographic vulnerabilities in current systems.	
4	Algebraic & Mathematical Attacks	Algebraic & Mathematical Attacks – Exploiting weak key generation (e.g., ROCA vulnerability).	LO1: Understand cryptographic vulnerabilities in current systems.	
5	Case Study: Broken Cryptosystems	Case Study: Broken Cryptosystems – RSA-768, WEP, SHA-1 collisions.	LO1: Understand cryptographic vulnerabilities in current systems.	
6	Workshop: Identifying Vulnerabilities in Open-Source Crypto Libraries.	Workshop: Identifying Vulnerabilities in Open-Source Crypto Libraries.	LO1: Understand cryptographic vulnerabilities in current systems.	
7	Differential Cryptanalysis	Differential Cryptanalysis – Theory and application (e.g., DES breakage)	LO2: Apply cryptanalysis techniques to assess security.	
8	Review	<ul style="list-style-type: none"> - Review of LO1 topics - Practice questions and mock assessment - Half-term assessment based on LO1 (theory) 	LO1 LO2	

8	Linear Cryptanalysis	Linear Cryptanalysis – Approximating S-boxes (e.g., FEAL cipher attacks).	LO2: Apply cryptanalysis techniques to assess security.	
10	Boomerang & Related-Key Attacks	Boomerang & Related-Key Attacks – Case study: AES-192/256 theoretical weaknesses.	LO2: Apply cryptanalysis techniques to assess security.	
11	Simulation Lab: Attacking Toy Ciphers	Simulation Lab: Attacking Toy Ciphers (e.g., Simplified AES/SPN networks).	LO2: Apply cryptanalysis techniques to assess security.	
12	Frequency Analysis & Classical Cipher Breaks	Frequency Analysis & Classical Cipher Breaks – Caesar, Vigenère, Enigma emulation.	LO2: Apply cryptanalysis techniques to assess security.	
13	Hands-on: Cryptool 2 or Python Scripting for Cryptanalysis	Hands-on: Cryptool 2 or Python Scripting for Cryptanalysis	LO2: Apply cryptanalysis techniques to assess security.	
14	Review	- Comprehensive review of all learning outcomes - Practice questions and revision of key topics		
15	Midterm	- Midterm assessment covering all learning outcomes (theory and practical elements)		
16	Feedback & Reflection	- Review - Individual feedback on performance - Reflective discussion on key learning points		
17	Quantum Computing Fundamentals	Quantum Computing Fundamentals – Qubits, superposition, and entanglement.	LO3: Explore quantum computing implications on encryption.	
18	Shor's Algorithm	Shor's Algorithm – Polynomial-time factorization of RSA/ECC.	LO3: Explore quantum computing implications on encryption.	

19	Grover's Algorithm	Grover's Algorithm – Quadratic speedup for symmetric key searches (AES implications).	LO3: Explore quantum computing implications on encryption.	
20	Post-Quantum Threat Timeline	Post-Quantum Threat Timeline – NIST's predictions vs. current quantum hardware.	LO3: Explore quantum computing implications on encryption.	
21	Debate: Quantum Supremacy vs. Practical Cryptanalytic Feasibility.	Debate: Quantum Supremacy vs. Practical Cryptanalytic Feasibility.	LO3: Explore quantum computing implications on encryption.	
22	Simulation: Qiskit/IBM Quantum Lab for Grover's Algorithm Demo	Simulation: Qiskit/IBM Quantum Lab for Grover's Algorithm Demo	LO3: Explore quantum computing implications on encryption.	
23	Review	Lattice-Based Cryptography – NTRU, Kyber, and LWE problems.	LO4: Evaluate quantum-resistant cryptographic schemes.	
24	Hash-Based Signatures	Hash-Based Signatures – SPHINCS+, XMSS, and one-time signatures.	LO4: Evaluate quantum-resistant cryptographic schemes.	
25	Multivariate & Code-Based Schemes	Multivariate & Code-Based Schemes – Rainbow, McEliece, BIKE.	LO4: Evaluate quantum-resistant cryptographic schemes.	
26	NIST PQC Finalist Analysis	NIST PQC Finalist Analysis – CRYSTALS-Kyber vs. Dilithium vs. Falcon.	LO4: Evaluate quantum-resistant cryptographic schemes.	
27	Final Project	Migration Pathways to PQC – Hybrid systems, crypto-agility frameworks. Implementation Challenges – Legacy systems, regulatory hurdles, cost analysis.	LO5: Design recommendations for cryptographic resilience.	

28	Final Project	Policy & Standardization – NIST, ETSI, and IETF timelines. Final Project: Quantum-Resistant Security Plan – For a hypothetical organization.	LO5: Design recommendations for cryptographic resilience.	
29	Final Exam Preparation & Review	LO1, LO2, LO3, LO4	LO1, LO2, LO3, LO4	
30	Final Exam		LO1, LO2, LO3, LO4	