




**INTERNATIONAL QUALIFICATIONS  
AND ASSESSMENT CENTRE (IQAC)**



| <b>Programme</b>               | <b>Level 6 Diploma in Data Science</b>                                                       |  |
|--------------------------------|----------------------------------------------------------------------------------------------|--|
| <b>Unit Number/ Unit Title</b> | UNIT 3 CLOUD COMPUTING AND DATA ENGINEERING                                                  |  |
| <b>Cohort Code:</b>            | L06CCDE-U3                                                                                   |  |
| <b>Unit Level</b>              | Level 6                                                                                      |  |
| <b>Total GLH</b>               | Total qualification time 200/ Total Guided learning hours 90/ Self-guided learning hours 110 |  |
| <b>Credits</b>                 | 20 CATS/ 10 ECTS                                                                             |  |
| <b>Lecturer</b>                |                                                                                              |  |
| <b>Start Date</b>              | <b>End Date</b>                                                                              |  |

|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Unit Aims</b>                                                                                                                  | This unit explores cloud-based data processing environments and DevOps workflows in scalable data engineering, covering platforms such as AWS, Azure, and GCP. Students will examine cloud-based data processing environments and the principles of DevOps workflows within scalable data engineering. The unit will cover major platforms like AWS, Azure, and Google Cloud Platform (GCP), focusing on their tools and services for data storage, processing, and analytics. By the end of the course, students will be equipped to design and implement efficient data pipelines and understand best practices for integrating DevOps in data engineering processes. |
| <b>Differentiation Strategies</b><br><i>(e.g. planned activities or support for individual learners according to their needs)</i> | The total number of students to be in the lesson is approximately 20. This is a multicultural group of students predominantly between the ages of 24 – 45, with numerous ethnic, gender, and creed background. These are UK academic level 5 students; hence it is assumed that they have practical, theoretical, or technological knowledge and understanding of a subject or field of work to find ways forward in broadly defined, complex contexts. These students must be able to                                                                                                                                                                                  |

|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | <p>generate information, evaluate, synthesise the use information from a variety of sources. Various approaches to addressing the various identified students needs will be adopted throughout the lesson. Such will include:-</p> <ol style="list-style-type: none"> <li>1. Progressive tasks</li> <li>2. Digital resources</li> <li>3. Verbal support</li> <li>4. Variable outcomes</li> <li>5. Collaborative learning</li> <li>6. Ongoing assessment</li> <li>7. Flexible-pace learning</li> </ol> |
| <b>Equality &amp; Diversity</b>   | Variety of teaching techniques will be employed to ensure that the needs of each individual learner are met.                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>Safeguarding &amp; Prevent</b> | Safeguarding policies and the Prevent duty are strictly observed to ensure the safety, well-being, and inclusivity of all students and staff.                                                                                                                                                                                                                                                                                                                                                         |
| <b>Health &amp; Safety</b>        | SIRM H&S policies will be maintained.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Learning Resources</b>         | <p style="text-align: center;"><b>Teaching and Learning Materials</b></p> <ul style="list-style-type: none"> <li>• Amazon Web Services. (2022). AWS Certified Solutions Architect Study Guide.</li> <li>• Mahmoud, R. (2020). Cloud Computing: Concepts, Technology &amp; Architecture. Prentice Hall.</li> <li>• GCP &amp; Azure documentation.</li> <li>• Turnbull, J. (2018). The Docker Book.</li> </ul>                                                                                          |

| Learning Outcome                                                     | Assessment Criteria                                                                                                      |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| LO1. <b>1. Describe the architecture of cloud platforms.</b>         | Written Report:<br>1.1 Compare IaaS, PaaS, and SaaS models.<br>1.2 Identify key services (e.g., S3, EC2, Azure Blob).    |
| LO2. <b>2. Deploy cloud-based data storage and compute services.</b> | Lab Assignment:<br>2.1 Implement a cloud pipeline for data ingestion.<br>2.2 Launch compute instances for data analysis. |
| LO3. <b>3. Apply DevOps principles to data science workflows.</b>    | Group Project:<br>3.1 Build CI/CD pipelines using tools like GitHub Actions.<br>3.2 Containerise workflows using Docker. |
| LO4. <b>4. Manage data in distributed storage systems.</b>           | Case Study:<br>4.1 Compare file systems (e.g., HDFS vs S3).<br>4.2 Ensure scalability and security in data storage.      |

| No | Learning Outcome / Topic        | Learning and Teaching Activities                                                                                                                                                        | Which assessment criteria does the session relate to? | Day/month/year/ signature |
|----|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------|
| 1. | <b>Cloud Computing Models</b>   | <b>Cloud Computing Models</b> IaaS vs. PaaS vs. SaaS: Use cases and trade-offs                                                                                                          | LO1: Cloud Architecture Fundamentals                  |                           |
| 2. | <b>AWS Core Services</b>        | <b>AWS Core Services</b> EC2, S3, Lambda, RDS – Architecture and pricing                                                                                                                | LO1: Cloud Architecture Fundamentals                  |                           |
| 3. | <b>Azure Services</b>           | <b>Azure Services</b> Blob Storage, VMs, Functions, Cosmos DB                                                                                                                           | LO1: Cloud Architecture Fundamentals                  |                           |
| 4. | <b>GCP Services</b>             | <b>GCP Services</b> Compute Engine, BigQuery, Cloud Functions                                                                                                                           | LO1: Cloud Architecture Fundamentals                  |                           |
| 5. | <b>Multi-Cloud Strategie</b>    | <b>Multi-Cloud Strategie</b> Hybrid cloud, interoperability challenges                                                                                                                  | LO1: Cloud Architecture Fundamentals                  |                           |
| 6. | <b>Cloud Storage Options</b>    | <b>Cloud Storage Options</b> Object (S3), block (EBS), file (EFS) storage                                                                                                               | LO2: Data Storage & Compute Deployment                |                           |
| 7. | <b>Data Ingestion Pipelines</b> | <b>Data Ingestion Pipelines</b> AWS Kinesis/GCP PubSub for streaming data                                                                                                               | LO2: Data Storage & Compute Deployment                |                           |
| 8. | Half-Term Exam                  | <ul style="list-style-type: none"> <li>- Review of LO1 topics</li> <li>- Practice questions and mock assessment</li> <li>- <b>Half-term assessment</b> based on LO1 (theory)</li> </ul> | LO1 LO2                                               |                           |
| 9. | <b>Batch Processing</b>         | <b>Batch Processing</b> AWS Glue/Azure Data Factory for ETL                                                                                                                             | LO2: Data Storage & Compute Deployment                |                           |

|     |                                      |                                                                                                                  |                                        |  |
|-----|--------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| 10. | <b>Serverless Compute</b>            | <b>Serverless Compute</b> AWS Lambda/Google Cloud Functions                                                      | LO2: Data Storage & Compute Deployment |  |
| 11. | <b>Cost Optimization</b>             | <b>Cost Optimization</b> Spot instances, auto-scaling, monitoring tools                                          | LO2: Data Storage & Compute Deployment |  |
| 12. | <b>CI/CD Fundamentals</b>            | <b>CI/CD Fundamentals</b> GitHub Actions, Jenkins, GitLab CI                                                     | LO3: DevOps for Data Science           |  |
| 13. | <b>Infrastructure as Code (IaC)</b>  | <b>Infrastructure as Code (IaC)</b> Terraform, AWS CloudFormation                                                | LO3: DevOps for Data Science           |  |
| 14. | Final Exam Preparation & Review      | - Comprehensive review of all learning outcomes<br>- Practice questions and revision of key topics               |                                        |  |
| 15. | Final Exam                           | - <b>Final-term assessment</b> covering all learning outcomes (theory and practical elements)                    |                                        |  |
| 16. | Feedback & Reflection                | - Review of final exam<br>- Individual feedback on performance<br>- Reflective discussion on key learning points |                                        |  |
| 17. | <b>Containerization Basics</b>       | <b>Containerization Basics</b> Docker images, Dockerfiles, registries                                            | LO3: DevOps for Data Science           |  |
| 18. | <b>Orchestration with Kubernetes</b> | <b>Orchestration with Kubernetes</b> Pods, deployments, services                                                 | LO3: DevOps for Data Science           |  |
| 19. | <b>MLOps Workflows</b>               | <b>MLOps Workflows</b> Model versioning, testing, deployment                                                     | LO3: DevOps for Data Science           |  |

|     |                                                        |                                                                                                                                        |                                  |  |
|-----|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| 20. | <b>Distributed File Systems</b>                        | <b>Distributed File Systems</b> HDFS vs. S3 vs. GCS architecture                                                                       | LO4: Distributed Data Management |  |
| 21. | <b>Data Lakes vs. Warehouses</b>                       | <b>Data Lakes vs. Warehouses</b> Delta Lake, Snowflake, Redshift                                                                       | LO4: Distributed Data Management |  |
| 22. | <b>Partitioning Strategies</b>                         | <b>Partitioning Strategies</b> Time-based, hash, range partitioning                                                                    | LO4: Distributed Data Management |  |
| 23. | Half-Term Exam                                         | <b>Project</b><br>End-to-end cloud data pipeline deployment                                                                            |                                  |  |
| 24. | <b>Security &amp; Compliance</b>                       | <b>Security &amp; Compliance</b> Encryption, IAM, GDPR/HIPAA compliance                                                                | LO4: Distributed Data Management |  |
| 25. | <b>Performance Optimization</b>                        | <b>Performance Optimization</b> Caching, query optimization, indexing                                                                  | LO4: Distributed Data Management |  |
| 26. | <b>Real-World Case Study</b>                           | <b>Real-World Case Study</b> Netflix's data pipeline architecture                                                                      | LO5: Capstone & Emerging Trends  |  |
| 27. | <b>Edge Computing</b>                                  | <b>Edge Computing</b> IoT data processing with AWS Greengrass                                                                          | LO5: Capstone & Emerging Trends  |  |
| 28. | <b>Data Mesh Architecture and Ethics in Cloud Data</b> | <b>Data Mesh Architecture</b> Domain-oriented decentralized data<br><b>Ethics in Cloud Data</b> Data sovereignty, environmental impact | LO5: Capstone & Emerging Trends  |  |
| 29. | Final Exam Preparation & Review                        | LO1, LO2, LO3, LO4                                                                                                                     | LO1, LO2, LO3, LO4               |  |
| 30. | Final Exam                                             |                                                                                                                                        | LO1, LO2, LO3, LO4               |  |