

THE INTERNATIONAL QUALIFICATIONS
AND ASSESSMENT CENTRE (IQAC)

Programme	Level 7 Diploma in Data Science	
Unit Number/ Unit Title	UNIT 2 ADVANCED STATISTICAL MODELLING AND INFERENCE	
Cohort Code:	L07ASMI-U2	
Unit Level	Level 7	
Total GLH	Total qualification time 200/ Total Guided learning hours 90/ Self-guided learning hours 110	
Credits	20 CATS/ 10 ECTS	
Lecturer		
Start Date		

Unit Aims	This unit deepens students' understanding of advanced statistical techniques used for inference and decision-making in complex data environments. It emphasizes multivariate analysis, Bayesian inference, model selection, and diagnostic techniques essential in predictive modelling and data interpretation.
Differentiation Strategies <i>(e.g. planned activities or support for individual learners according to their needs)</i>	<p>The total number of students to be in the lesson is approximately 20. This is a multicultural group of students predominantly between the ages of 24 – 45, with numerous ethnic, gender, and creed background. These are UK academic level 5 students; hence it is assumed that they have practical, theoretical, or technological knowledge and understanding of a subject or field of work to find ways forward in broadly defined, complex contexts. These students must be able to generate information, evaluate, synthesise the use information from a variety of sources. Various approaches to addressing the various identified students needs will be adopted throughout the lesson. Such will include:-</p> <ol style="list-style-type: none">1. Progressive tasks2. Digital resources3. Verbal support

	<ol style="list-style-type: none"> 4. Variable outcomes 5. Collaborative learning 6. Ongoing assessment 7. Flexible-pace learning
Equality & Diversity	Variety of teaching techniques will be employed to ensure that the needs of each individual learner are met.
Safeguarding & Prevent	Safeguarding policies and the Prevent duty are strictly observed to ensure the safety, well-being, and inclusivity of all students and staff.
Health & Safety	SIRM H&S policies will be maintained.
Learning Resources	<p style="text-align: center;">Teaching and Learning Materials</p> <ul style="list-style-type: none"> ● Gelman, A. et al. (2013). Bayesian Data Analysis. CRC Press. ● Montgomery, D. C., & Runger, G. C. (2014). Applied Statistics and Probability for Engineers. Wiley. ● Wood, S. (2017). Generalized Additive Models. CRC Press. ● Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications. Springer.

Learning Outcome	Assessment Criteria
LO1. 1. Apply advanced statistical models to real-world datasets.	<p>Written Report:</p> <p>1.1 Build and interpret multivariate regression models.</p> <p>1.2 Analyze model assumptions and fit.</p>
LO2. 2. Demonstrate Bayesian reasoning in data analysis.	<p>Exam:</p> <p>2.1 Use Bayes' theorem for probabilistic inference.</p> <p>2.2 Interpret posterior distributions and credible intervals.</p>
LO3. 3. Evaluate time-series and survival analysis models.	<p>Portfolio:</p> <p>3.1 Apply ARIMA and exponential smoothing methods.</p> <p>3.2 Conduct survival analysis with censored data.</p>
LO4. 4. Critically assess model diagnostics and selection methods.	<p>Practical Exercise:</p> <p>4.2 Apply AIC/BIC for model comparison.</p> <p>4.2 Perform residual analysis and hypothesis testing.</p>

No	Learning Outcome / Topic	Learning and Teaching Activities	Which assessment criteria does the session relate to?	Day/month/year/ signature
1.	Multivariate Linear Regression	Multivariate Linear Regression Model formulation, interpretation of coefficients	LO1: Advanced Statistical Models	
2.	Model Assumptions & Diagnostics	Model Assumptions & Diagnostics Linearity, homoscedasticity, multicollinearity (VIF)	LO1: Advanced Statistical Models	
3.	Generalized Linear Models (GLMs)	Generalized Linear Models (GLMs) Logistic regression, Poisson regression	LO1: Advanced Statistical Models	
4.	Mixed Effects Models	Mixed Effects Models Fixed vs. random effects, hierarchical modeling	LO1: Advanced Statistical Models	
5.	Nonlinear Regression	Nonlinear Regression Polynomial, spline, and kernel regression	LO1: Advanced Statistical Models	
6.	Bayesian vs. Frequentist Paradigms	Bayesian vs. Frequentist Paradigms Key differences, subjective vs. objective probability	LO2: Bayesian Inference	
7.	Bayes' Theorem & Applications	Bayes' Theorem & Applications Disease testing, spam filtering case studies	LO2: Bayesian Inference	
8.	Half-Term Exam	<ul style="list-style-type: none"> - Review of LO1 topics - Practice questions and mock assessment - Half-term assessment based on LO1 (theory) 	LO1 LO2	
9.	Prior Selection	Prior Selection Conjugate priors, non-informative vs. informative priors	LO2: Bayesian Inference	
10.	Markov Chain Monte Carlo (MCMC)	Markov Chain Monte Carlo (MCMC) Gibbs sampling, Metropolis-Hastings algorithm	LO2: Bayesian Inference	

11.	Posterior Interpretation	Posterior Interpretation Credible intervals, highest density regions (HDR)	LO2: Bayesian Inference	
12.	Time-Series Fundamentals	Time-Series Fundamentals Stationarity, autocorrelation (ACF/PACF)	LO3: Time-Series & Survival Analysis	
13.	ARIMA Models	ARIMA Models Identification (p, d, q), SARIMA for seasonality	LO3: Time-Series & Survival Analysis	
14.	Final Exam Preparation & Review	- Comprehensive review of all learning outcomes - Practice questions and revision of key topics		
15.	Final Exam	- Final-term assessment covering all learning outcomes (theory and practical elements)		
16.	Feedback & Reflection	- Review of final exam - Individual feedback on performance - Reflective discussion on key learning points		
17.	Exponential Smoothing	Exponential Smoothing Holt-Winters, ETS models	LO3: Time-Series & Survival Analysis	
18.	Survival Analysis Basics	Survival Analysis Basics Kaplan-Meier estimator, hazard functions	LO3: Time-Series & Survival Analysis	
19.	Cox Proportional Hazards Model	Cox Proportional Hazards Model Interpretation of coefficients, censoring	LO3: Time-Series & Survival Analysis	
20.	Bootstrapping	Bootstrapping Nonparametric confidence intervals	LO3: Time-Series & Survival Analysis	

21.	Information Criteria	Information Criteria AIC, BIC, DIC for model comparison	LO4: Model Evaluation & Selection	
22.	Cross-Validation Techniques	Cross-Validation Techniques k-fold, time-series CV (rolling window)	LO4: Model Evaluation & Selection	
23.	Half-Term Exam	Project Full statistical analysis report (e.g., marketing ROI)		
24.	Residual Analysis	Residual Analysis QQ plots, Shapiro-Wilk test, heteroscedasticity tests	LO4: Model Evaluation & Selection	
25.	Hypothesis Testing	Hypothesis Testing Likelihood ratio test, Wald test	LO4: Model Evaluation & Selection	
26.	Bayesian Workflow	Bayesian Workflow From prior elicitation to posterior predictive checks	LO5: Integration & Case Studies	
27.	Time-Series Forecasting Project	Time-Series Forecasting Project Stock prices, COVID-19 case prediction	LO5: Integration & Case Studies	
28.	Survival Analysis Application	Survival Analysis Application Clinical trial data (R/Python implementation)	LO5: Integration & Case Studies	
29.	Final Exam Preparation & Review	LO1, LO2, LO3, LO4	LO1, LO2, LO3, LO4	
30.	Final Exam		LO1, LO2, LO3, LO4	