

THE INTERNATIONAL QUALIFICATIONS
AND ASSESSMENT CENTRE (IQAC)

Programme	Level 7 Diploma in Data Science	
Unit Number/ Unit Title	UNIT 3 ARTIFICIAL INTELLIGENCE AND AUTONOMOUS SYSTEMS	
Cohort Code:	L07AIAS-U3	
Unit Level	Level 7	
Total GLH	Total qualification time 200/ Total Guided learning hours 90/ Self-guided learning hours 110	
Credits	20 CATS/ 10 ECTS	
Lecturer		
Start Date		End Date

Unit Aims	This module explores the application of artificial intelligence (AI) in building autonomous systems. Students will examine intelligent agent design, decision-making under uncertainty, robotics integration, and reinforcement learning, gaining practical experience with simulation environments.
Differentiation Strategies <i>(e.g. planned activities or support for individual learners according to their needs)</i>	<p>The total number of students to be in the lesson is approximately 20. This is a multicultural group of students predominantly between the ages of 24 – 45, with numerous ethnic, gender, and creed background. These are UK academic level 5 students; hence it is assumed that they have practical, theoretical, or technological knowledge and understanding of a subject or field of work to find ways forward in broadly defined, complex contexts. These students must be able to generate information, evaluate, synthesise the use information from a variety of sources. Various approaches to addressing the various identified students needs will be adopted throughout the lesson. Such will include:-</p> <ol style="list-style-type: none">1. Progressive tasks2. Digital resources3. Verbal support4. Variable outcomes5. Collaborative learning

	<p>6. Ongoing assessment</p> <p>7. Flexible-pace learning</p>
Equality & Diversity	Variety of teaching techniques will be employed to ensure that the needs of each individual learner are met.
Safeguarding & Prevent	Safeguarding policies and the Prevent duty are strictly observed to ensure the safety, well-being, and inclusivity of all students and staff.
Health & Safety	SIRM H&S policies will be maintained.
Learning Resources	<p style="text-align: center;">Teaching and Learning Materials</p> <ul style="list-style-type: none"> • Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press. • Russell, S. J., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach. Pearson. • Murphy, K. P. (2022). Probabilistic Machine Learning. MIT Press. • Arkin, R. C. (2009). Governing Lethal Behavior in Autonomous Robots. CRC Press.

Learning Outcome		Assessment Criteria
LO1.	1. Design AI-based decision-making systems.	<p>Simulation Project:</p> <p>1.1 Build intelligent agents using rule-based and learning-based approaches.</p> <p>1.2 Evaluate decision trees and MDPs.</p>
LO2.	2. Apply reinforcement learning techniques	<p>Practical Assessment:</p> <p>2.1 Implement Q-learning and policy gradient methods.</p> <p>2.2 Test models in simulated environments.</p>
LO3.	3. Examine robotics and autonomous control.	<p>Group Presentation:</p> <p>3.1 Explain integration of AI in robotics.</p> <p>3.2 Review real-world use cases (e.g., drones, autonomous vehicles).</p>
LO4.	4. Evaluate risks and ethics of AI deployment.	<p>Case Study:</p> <p>4.1 Analyze safety and accountability challenges in autonomous systems.</p> <p>4.2 Propose governance frameworks</p>

No	Learning Outcome / Topic	Learning and Teaching Activities	Which assessment criteria does the session relate to?	Day/month/year/ signature
1.	Intelligent Agents & Architectures	Intelligent Agents & Architectures Rule-based vs. learning-based agents, BDI model	LO1: AI-Based Decision-Making Systems	
2.	Decision Trees & Random Forests	Decision Trees & Random Forests Splitting criteria (Gini, entropy), pruning	LO1: AI-Based Decision-Making Systems	
3.	Markov Decision Processes (MDPs)	Markov Decision Processes (MDPs) States, actions, rewards, Bellman equations	LO1: AI-Based Decision-Making Systems	
4.	Partially Observable MDPs (POMDPs)	Partially Observable MDPs (POMDPs) Belief states, applications in robotics	LO1: AI-Based Decision-Making Systems	
5.	Multi-Agent Systems	Multi-Agent Systems Game theory, Nash equilibrium, swarm intelligence	LO1: AI-Based Decision-Making Systems	
6.	RL Fundamentals	RL Fundamentals Exploration vs. exploitation, reward shaping	LO2: Reinforcement Learning (RL)	
7.	Q-Learning & SARSA	Q-Learning & SARSA Temporal difference learning, ϵ -greedy policies	LO2: Reinforcement Learning (RL)	
8.	Half-Term Exam	<ul style="list-style-type: none"> - Review of LO1 topics - Practice questions and mock assessment - Half-term assessment based on LO1 (theory) 	LO1 LO2	
9.	Deep Q-Networks (DQN)	Deep Q-Networks (DQN) Experience replay, target networks	LO2: Reinforcement Learning (RL)	
10.	Policy Gradient Methods	Policy Gradient Methods REINFORCE, PPO, Actor-Critic architectures	LO2: Reinforcement Learning (RL)	

11.	Simulated Environments	Simulated Environments OpenAI Gym, Unity ML-Agents, CARLA (autonomous driving)	LO2: Reinforcement Learning (RL)	
12.	Robot Perception	Robot Perception SLAM (Simultaneous Localization and Mapping), LiDAR/camera fusion	LO3: Robotics & Autonomous Control	
13.	Motion Planning	Motion Planning A, RRT, trajectory optimization	LO3: Robotics & Autonomous Control	
14.	Final Exam Preparation & Review	- Comprehensive review of all learning outcomes - Practice questions and revision of key topics		
15.	Final Exam	- Final-term assessment covering all learning outcomes (theory and practical elements)		
16.	Feedback & Reflection	- Review of final exam - Individual feedback on performance - Reflective discussion on key learning points		
17.	Control Systems	Control Systems PID control, MPC (Model Predictive Control)	LO3: Robotics & Autonomous Control	
18.	Autonomous Vehicles	Autonomous Vehicles Levels of autonomy, sensor suites (Tesla vs. Waymo)	LO3: Robotics & Autonomous Control	
19.	Drones & UAVs	Drones & UAVs Path planning, obstacle avoidance, swarm robotics	LO3: Robotics & Autonomous Control	
20.	Safety Assurance	Safety Assurance Fail-safe mechanisms, ISO 26262 (automotive)	LO4: Risks & Ethics of Autonomous AI	
21.	Accountability Frameworks	Accountability Frameworks Liability laws, black box problem	LO4: Risks & Ethics of Autonomous AI	
22.	Bias in Autonomous Systems	Bias in Autonomous Systems Case study: Racial bias in facial recognition for robotics	LO4: Risks & Ethics of Autonomous AI	
23.	Half-Term Exam	Project Design an autonomous agent with safety/ethics report		

24.	Ethical Dilemmas	Ethical Dilemmas Trolley problem, ethical decision-making algorithms	LO4: Risks & Ethics of Autonomous AI	
25.	Governance & Standards	Governance & Standards EU AI Act, IEEE Ethically Aligned Design	LO4: Risks & Ethics of Autonomous AI	
26.	Human-AI Collaboration	Human-AI Collaboration Cobots (collaborative robots), explainable AI in autonomy	LO5: Integration & Capstone	
27.	Edge AI for Autonomous Systems	Edge AI for Autonomous Systems TinyML, federated learning for privacy	LO5: Integration & Capstone	
28.	Case Study: Real-World Failures	Case Study: Real-World Failures Uber ATG fatality, Boeing 737 MAX MCAS	LO5: Integration & Capstone	
29.	Final Exam Preparation & Review	LO1, LO2, LO3, LO4	LO1, LO2, LO3, LO4	
30.	Final Exam		LO1, LO2, LO3, LO4	